Naunyn Schmiedebergs Arch Pharmacol. 2025 Nov 4. doi: 10.1007/s00210-025-04776-7. Online ahead of print.

ABSTRACT

The gut-brain axis is a highly complex, bidirectional communication link between the gut and the central nervous system (CNS), mainly through neural, endocrine, immunological, and metabolic pathways. This review outlines the growing contribution of gut microbiota in the remediation of neurological health and also emphasizes the controlling role of gut microbiota on the synthesis of neurotransmitters. Emerging evidence indicates that dysbiosis of the gut is related to a variety of neurodegenerative and neuropsychiatric diseases such as Parkinson’s disease (PD), Alzheimer’s disease (AD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), Huntington’s disease (HD), autism spectrum disorders (ASD), depression, and glioblastoma. Mechanistic understandings show that gut microbes critically contribute to neuroimmune and blood-brain barrier (BBB) signaling. The peripheral association of gut microflora, networked with inflammasome activation, nuclear factor kappa B (NF-κB), and type-I IFN pathways highlights their role in CNS inflammation. Microbiota-targeted interventions with probiotics, prebiotics, synbiotics, antibiotics, dietary modifications, and fecal microbiota transplantation are examined for their therapeutic potential. These strategies appear to be promising to reinstate microbial balance, enhance neuroplastic responses, and ameliorate the disease symptoms. The review highlights personalized microbiome-based algorithms, underpinned by integrated multi-omics technologies and machine-learning-driven diagnostics. Future research should address underlying microbial mechanisms and perform large, randomized controlled trials in order to establish microbiota-based therapies for neurological disorders.

PMID:41186720 | DOI:10.1007/s00210-025-04776-7