Sci Rep. 2025 May 2;15(1):15387. doi: 10.1038/s41598-025-98264-w.
ABSTRACT
Mental disorders represent a critical global health challenge that affects millions around the world and significantly disrupts daily life. Early and accurate detection is paramount for timely intervention, which can lead to improved treatment outcomes. Electroencephalography (EEG) provides the non-invasive means for observing brain activity, making it a useful tool for detecting potential mental disorders. Recently, deep learning techniques have gained prominence for their ability to analyze complex datasets, such as electroencephalography recordings. In this study, we introduce a novel deep-learning architecture for the classification of mental disorders such as post-traumatic stress disorder, depression, or anxiety, using electroencephalography data. Our proposed model, the multichannel convolutional transformer, integrates the strengths of both convolutional neural networks and transformers. Before feeding the model as low-level features, the input is pre-processed using a common spatial pattern filter, a signal space projection filter, and a wavelet denoising filter. Then the EEG signals are transformed using continuous wavelet transform to obtain a time-frequency representation. The convolutional layers tokenize the input signals transformed by our pre-processing pipeline, while the Transformer encoder effectively captures long-range temporal dependencies across sequences. This architecture is specifically tailored to process EEG data that has been preprocessed using continuous wavelet transform, a technique that provides a time-frequency representation, thereby enhancing the extraction of relevant features for classification. We evaluated the performance of our proposed model on three datasets: the EEG Psychiatric Dataset, the MODMA dataset, and the EEG and Psychological Assessment dataset. Our model achieved classification accuracies of 87.40% on the EEG and Psychological Assessment dataset, 89.84% on the MODMA dataset, and 92.28% on the EEG Psychiatric dataset. Our approach outperforms every concurrent approaches on the datasets we used, without showing any sign of over-fitting. These results underscore the potential of our proposed architecture in delivering accurate and reliable mental disorder detection through EEG analysis, paving the way for advancements in early diagnosis and treatment strategies.
PMID:40316629 | DOI:10.1038/s41598-025-98264-w
Recent Comments